

Abstracts

Experimentally Observed Frequency Variation of the Attenuation of Millimeter-Wave Coplanar Transmission Lines with Thin Metallization

W.H. Haydl. "Experimentally Observed Frequency Variation of the Attenuation of Millimeter-Wave Coplanar Transmission Lines with Thin Metallization." 1992 Microwave and Guided Wave Letters 2.8 (Aug. 1992 [MGWL]): 322-324.

The attenuation of small coplanar transmission lines on insulating InP and GaAs has been investigated experimentally over the frequency range 0-60 GHz by on-wafer probing. The ground to ground spacing d , the center line width w , and the metal thickness t were varied. For thin (0.25-1 μm) gold metallization, the variation of the attenuation with frequency was found to be dependent on the geometry of the line. A good fit to the experimental data was obtained when the attenuation a was modeled as $a = a_{\text{sub 0}}/f^{\text{sup n}}$, where $a_{\text{sub 0}}$ and n are geometry dependent. The exponent n was found to be in the range 0.15-0.35, and to increase with increasing w/d ratio, which is interpreted to be due to a correspondingly varying frequency dependent resistance and current distribution.

[Return to main document.](#)